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We consider the asymmetric simple exclusion process. We review some results in
dimension d \ 3 concerning the fluctuation-dissipation theorem and we prove
regularity of viscosity coefficients.
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1. INTRODUCTION

In this paper, we will review some of the results concerning the space-time
fluctuations in equilibrium of the asymmetric simple exclusion process in
dimension d \ 3. These are examples of nonreversible models of interacting
particle systems on Zd with conservation of particles and a family of
ergodic equilibrium distributions indexed by a single parameter, i.e., the
density. The model is simple enough to admit a certain amount of explicit
calculations.
Let t̂(x) be stationary random scalar field on Rd with a distribution n

that is invariant under translations by x ¥ Rd. Under some reasonable
conditions the distribution mE of the field rescaled by

tE(x)=E−
d
2[t̂(E−1x)−a]



where a is the mean En[t̂(x)], will converge, as EQ 0, to white noise m with
variance

Em[t(x) t(y)]=s2d(y−x)

If there is a Markovian evolution of the field t1( · ) with n as invariant
measure then we have space time process t̂(x, t) with distribution P1 with
marginals n for any fixed time. If we now do a space-time rescaling of the
form

tE(x, t)=E−
d
2[t(E−1x, E−2t)−a]

the scaled process tE(x, t) with distribution PE is expected to converge to an
Ornstein–Uhlenbeck type fluctuation process t(t, x) with distribution P,
satisfying

dt(t, x)=(At)(t, x) dt+db(x, t)

expressed in the weak form as a linear stochastic differential equation

dOG, t(t)P=OAG, t(t)P dt+dbG(t).

Usually A takes the form of an elliptic second order differential operator
with constant coefficients

AG=C
i, j
ai, jDiDjG

where {ai, j} is s symmetric positive definite matrix. The fluctuation-dissi-
pation relation asserts that the family of Brownian motions bG( · ) that
depend linearly on the test function G satisfy

E[[bG(t)]2]=s2t F
R
d
Oa NG, NGP dx

The proof usually follows the martingale methods. We can write a martin-
gale decomposition (Itô’s formula) of the form

dOG, tE(t)P=OG, YE(tE(t))P dt+dME, G(t)

We only have to check that

lim
EQ 0

OG, YE(t( · ))P=OAG, tP

lim
EQ 0
EPE[[ME, G(t)]2]=s2t F

R
d
Oa NG, NGP
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A central limit theorem for Martingales ensures that any limit of ME, G is a
Brownian motion. Except for some technical issues this is the basic proof.
However there are models where something quite different happens.

The term YE(t) becomes big but its integral

F
t

0
OG, YE(t(s))P ds (1.1)

stays finite. YE is represented as the sum f
(1)
E +f

(2)
E . The big piece f

(1)
E is

transformed, by a central limit theorem of sorts, into Brownian noise and
combines with the noise ME, G(t) to provide the new bG(t). The remaining
part f (2)E stays finite and becomes

F
t

0
OAG, t(s)P ds

where A again is of the same form, i.e., a second order elliptic operator.
This splitting has to done by a carefully constructed decomposition and a
new formula provided for the coefficients {ai, j} that defineA.
The simple exclusion models studied here provide examples of both

situations. The symmetric case is an easy text book case, while the asym-
metric versions exhibit the more complex behavior alluded to earlier.

2. NOTATION AND RESULTS

Fix a probability distribution p( · ) supported on a finite subset of
Zdg=Zd0{0} and denote by L the generator of the simple exclusion
process on Zd associated to p( · ). L acts on local functions f on X=
{0, 1}Z

d
as

(Lf)(g)= C
x, y ¥ Z

d
p(y−x) g(x){1−g(y)}[f(sx, yg)−f(g)] (2.1)

where sx, yg stands for the configuration obtained from g by exchanging the
occupation variables g(x), g(y):

(sx, yg)(z)=˛g(z) if z ] x, y
g(x) if z=y
g(y) if z=x

The model describes a possibly infinite system of particles, with at most
one particle per site on the lattice Zd that evolves according to the follow-
ing simple random motion. Each particle waits for a standard exponential
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time, i.e., for a Poisson event of rate 1 to occur, and then tries to jump to a
new site that is picked at random. If the original site is x the probability of
picking y is p(y−x). If the new site is empty the jump is completed. If the
site y is occupied the jump cannot be carried out and the particle is forced
to wait for another exponential time. All the particles are performing this
motion independently and concurrently. This is described formally by the
generator (2.1).
For this model one can check that Bernoulli product measures with

na[g(x)=1]=a for 0 [ a [ 1 are equilibrium distributions. This amounts
to verifying that

F
X
(Lf)(g) na(dg)=0

for every local function f: XQ R. It is not hard to check that these are
actually extremal or ergodic for the evolution. If we fix 0 < a < 1, there is a
stationary process gt with values in X, which has na as the distribution at
any time t. If p( · ) is symmetric about the origin, the generator (2.1) is self-
adjoint with respect to na and therefore the process gt is reversible. In any
case if f(g) is a local function on X with mean 0 with respect to na then the
ergodic theorem asserts that

lim
TQ.

1
T
F
T

0
f(gt) dt=0

almost surely with respect to the process Pa, the stationary Markov process
with evolution determined by (2.1) and invariant distribution na. The exis-
tence of the conserved quantity results in the absence of a uniform rate in
the ergodic theorem. In the reversible case this manifests itself in the
absence of a spectral gap for the operaror L given by (2.1) in L2(na). Let us
start with the density field

C
x ¥ Z

d
g(x) dx

Define its normalized and rescaled version

tE( · )=E
d
2 C
x
[g(x)−a] dEx

which is to be thought of as density fluctuation over a spatial scale of size
E−1 and express it in weak form as

gE(g)=OG, tEP=E
d
2 C
x
G(Ex)[g(x)−a]
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A computation reveals

(LgE)(g)=E
d
2 C
x

C
y
p(y−x) g(x)(1−g(y))[G(Ey)−G(Ex)]

If we now assume that p( · ) is symmetric,

(LgE)(g)=
E
d
2

2
C
x

C
y
p(y−x) [g(x)(1−g(y))−g(y)(1−g(x))][G(Ey)−G(Ex)]

=
E
d
2

2
C
x

C
y
p(y−x) [g(x)−g(y)][G(Ey)−G(Ex)]

=E
d
2C
x

C
y
p(y−x) g(x) [G(Ey)−G(Ex)]

4 E
d
2+2C

x
[g(x)−a]AG(Ex)

whereA is the elliptic operator

1
2 C
i, j
ai, jDi, j

with

ai, j=C
x
p(x) xixj

the covariance matrix of p( · ). Therefore the density fluctuation

tE=E
d
2 C
x
[g(x)−a] dEx (2.2)

has an approximate dissipation that equals

E2AtE

Speeding up time by the factor E−2 takes us to diffusive scaling, replacing L
by E−2L, and now the dissipation will be approximatelyAtE. There is noise
that is built in, in the Poisson process generating the jumps, which scales in
the diffusive scale to a Brownian noise, leading to an Ornstein–Uhlenbeck
process for the density fluctuations in the diffusive scale. The equilibrium
fluctuations are that of white noise

E[Ot(t), GP2]=a(1−a) F
Rd
|G|2 dx
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and the evolution of the fluctuations in the diffusive scale takes the form

dOt(t) , GP=OG,At(t)P dt+dbG(t)

with

E[db2G]=a(1−a) 5F
Rd

C
i, j
ai, j(DiG)(DjG) dx6 dt

If we drop the assumption of symmetry on p( · ), the situation is much
more complex. Let us still suppose that

C
z
zp(z)=0

We cannot proceed beyond

(LgE)(g)=E
d
2 C
x

C
y
p(y−x) g(x)(1−g(y))[G(Ey)−G(Ex)]

which we can rewrite as

(LgE)(g) 4 E
d
2+1 C

x
C
y
p(y−x)[g(x)(1−g(y))−a(1−a)]Oy−x, NG(Ex)P

The rescaling, which should still be by a factor of E−2 leads us to a term

YE(t)=E
d
2−2 C

x
C
y
p(y−x) g(x)(1−g(y))[G(Ey)−G(Ex)]

4 E
d
2−1 C

x
ONG(Ex), yxW(g)P

withW(g)={Wi(g)} given by

Wi(g)=g(0) C
z
p(z) zi(1−g(z))

which is of magnitude E−1. In the reversible caseWi(g) is of a special form

Wi(g)=C
z
ci(z)[g(z)−g(0)]

allowing for another summation by parts, getting rid of the troublesome
E−1 factor and yielding, as earlier,

YE(t) 4 OAG, tEP
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for some second order elliptic differential operator A that can be cal-
culated. More generally if we have a gradient system, i.e., if Wi takes the
form

Wi(g)=C
z
ci(z)[yzh(g))−h(g)]

for some local h with zero mean, then

YE(t)=E
d
2 C
x
(AG)(Ex) yxh(g)

In such a case one can replace YE by

ŶE=cE
d
2 C
x
(AG)(Ex)[g(x)−a]

where the constant c is calculated as

c=
d
da
Ena[h(g)]

In general if W(g) is not of gradient type then we show that W(g) can be
replaced by ; z c(W, z)[g(z)−g(0)] for a suitable choice of c(W, z).
Finally when ; z zp(z)=m ] 0, it turns out that if we speed up time

by E−1, then there is a limit for the fluctuations and it is

dt(x, t)+(1−2a)Om, Nt(x, t)P=0

In that scaling the Poisson noise become ineffective and disappears leaving
just a translation. If we denote c=m(1−2a), then we can center the
translations and consider

tE(x− cE−1t, E−2t)

This will now have a scaling limit and the analysis is very similar to the one
for the mean 0 asymmetric case.
In order to carry out all the steps we need to understand the behavior

of

F
T

0
C
z ¥ V
yzf(gt) dt
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over large volumes and large times. We can take V to be the box
{x: |xi | [ E−1; 1 [ i [ d}. We can take T to be either E−1 or E−2. With the
choice of T=E−1, we can show that

E
d
2 F
T

0

5 C
z ¥ V
yz(f(gt)−c(f, a) g(0))6 dt

is negligible if we choose c(f, a) to be

c(f, a)=
d
da
Ena[f(g)]

Now we turn to T=E−2. The main result is Theorem 5.3, known as the
fluctuation-dissipation theorem. There are two distinct types of fluctua-
tions. If u is a local function, then fluctuations of the form

F
t

0
fE(gsE −2) ds

where

fE(g)=C
x
G(Ex)(yxLu)(g)

satisfy a central limit theorem and converge to a Brownian Motion when
scaled by E1+

d
2.

On the other hand if v=; z b(z)[g(z)−g(0)] for some b supported on
a finite subset of Zdg, then

gE=C
x
G(Ex)(yxv)(g)=C

x, z
G(Ex) b(z)[g(x+z)−g(x)]

=C
x
G(Ex) yxh(g)

with h(g)=; z b(z)[g(z)−g(0)] and as we saw before, a summation by
parts helps. Consequently fluctuations of the form

F
t

0
gE(gsE−2) ds

when normalized again by E1+
d
2 correspond to a time average of density

fluctuations.
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The analysis of non-gradient systems depends on our ability to write
anyW that satisfies some conditions as

W=Lu+h

While u and h may not be local functions, what we do show is that it is
possible to approximateW well enough by Lu+h with some local u and h.
The fluctuation dissipation theorem asserts that if w ¥Án \ 2 Gn (see

the end of the section for a definition) is a local function then there are
coefficients b(z, w) such that the fluctuation of w−; z b(z, w)[g(z)−g(0)]
is well approximated by fluctuations of the first type. The constants b(z, w)
are defined for each a. We prove in Section 7 that these are C. functions
of a.
The study of fluctuations therefore depends on controlling space-time

correlations of the form

Ena 5: FT
0

C
z ¥ V
yzf(gt) dt :

26

for large times T and large volumes V.
The natural way to control such objects is to invert the generator of

the process L, i.e., to solve the equation

Lu=C
z ¥ V
yzf (2.3)

perhaps with u=; z ¥ V yzv for some v.
Our goal is to show that we can approximate, in a proper weak sense,

the solution of equation (2.3) by such functions. Our interest is to perform
such approximation in a diffusive space-time scaling limit (i.e., T ’ |V|2/d).
We will characterize the functions f such that the corresponding

asymptotic space-time variance is finite and then we will prove that this
variance is a smooth function of the density a.
There is a natural orthonormal basis for L2(na) indexed by finite

subsets A of Zd that commutes with yz. Moreover there is a corresponding
decomposition of L2(na) as Án \ 0 Gn as the direct sum of orthogonal sub-
spaces according to the cardinality n of A. Since, in this context, one
cannot distinguish between f and yzf, A and yzA can be identified.
A reasonable cross section, one with a multiplicity of n for sets of cardi-
nality n can be found for the equivalence classes. Another important point
is that that in the symmetric case L leaves each Gn invariant so that the
inversion needs to be done only on each Gn, which is no harder than the
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analysis of random walk of n−1 particles on Zd. If d \ 3, the asymmetric
case can be treated as a perturbation of the symmetric one. Although this is
a somewhat singular perturbation the transience of the random walk in
d \ 3 and the fact that the perturbation only causes Gn to be mapped into
Gn−1 À Gn À Gn+1 help the analysis. The perturbation is controlled with the
use of weighted norms with weights growing polynomially in the degree n
of Gn.
Duality for the symmetric simple exclusion was first observed by

Spitzer and was broadly used in this context (cf. ref. 12). The use of a dual
base in order to study fluctuations in the asymmetric simple exclusion in
dimension d \ 3 was introduced in ref. 8 (where the fluctuation-dissipation
theorem was first proved) and in ref. 13. The fluctuation dissipation
theorem was then applied in order to study the diffusive incompressible
limit (cf. ref. 3), the first order corrections to the hydrodynamic limit
(cf. ref. 6) and the equilibrium fluctuations for the density field. (2)

Always with the use of this dual base, in ref. 11 we prove the regularity
of the selfdiffusion coefficient (as function of the density) for the symmetric
simple exclusion (reversible). Using this approach in ref. 1 is proved the
regularity of the bulk diffusion coefficient for a non-gradient speed change
exclusion that has na as equilibrium (reversible) measures.

3. DUALITY

We examine in this section the action of the symmetric part L s of the
generator on the space of local functions endowed with a particular scalar
product S · , ·T. Fix once for all a density a in (0, 1). All expectations in
this section are taken with respect to na and we omit all sub-indices.

3.1. The Dual Space

For each n \ 0, denote by En the subsets of Zd with n points and let
E=1n \ 0 En be the class of finite subsets of Zd. For each A in E, let YA be
the local function

YA=D
x ¥ A

g(x)−a

`q(a)

where q(a)=a(1−a). By convention, Yf=1. It is easy to check that
{YA, A ¥ E} is an orthonormal basis of L2(na). For each n \ 0, denote by
Gn the subspace of L2(na) generated by {YA, A ¥ En}, so that L2(na)=
Án \ 0 Gn. Functions in Gn are said to have degree n.
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Consider a local function f. Since {YA: A ¥ E} is a basis of L2(na), we
may write

f=C
n \ 0

C
A ¥ En

f(A) YA

Note that the coefficients f(A) depend not only on f but also on the
density a: f(A)=f(A, a). Since f is a local function, f: EQ R is a function
of finite support.
For local functions u, v, define the scalar product S · , ·T by

Su, vT= C
x ¥ Z

d
{Oyxu, vP−OuPOvP} (3.1)

where {yx, x ¥ Zd} is the group of translations. That this is in fact an inner
product can be seen by the relation

OOu, vPP= lim
V ‘ Z

d

1
|V|
7 C
x ¥ V
yx(u−OuP), C

x ¥ V
yx(v−OvP)8 .

Since Su−yxu , vT=0 for all x in Zd, this scalar product is only semidefi-
nite. Denote by L2S · , ·T(na) the Hilbert space generated by the local func-
tions and the inner product S · , ·T. The scalar product of two local func-
tions u, v can be written in terms of the Fourier coefficients of u, v through
a simple formula. To this end, fix two local functions u, v and write them in
the basis {YA, A ¥ E}:

u= C
A ¥ E

u(A) YA, v= C
A ¥ E

v(A) YA

An elementary computation shows that

Su, vT= C
x ¥ Z

d
C
n \ 1

C
A ¥ En

u(A) v(A+x)

In this formula, B+z is the set {x+z; x ¥ B}. The summation starts
from n=1 due to the centering by the mean in the definition of the inner
product S · , ·T.
We say that two finite subsets A, B of Zd are equivalent if one is the

translation of the other. This equivalence relation is denoted by ’ so that
A ’ B if A=B+x for some x in Zd. Let Ẽn be the quotient of En with
respect to this equivalence relation: Ẽn=En/ ’ , Ẽ=E/ ’ . If, for some n,
f: En Q R is a summable function,

C
A ¥ En

f(A)= C
Ã ¥ Ẽn

f̃(Ã)
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where, for any equivalence class Ã and a summable function f: EQ R,

f̃(Ã)= C
z ¥ Z

d
f(A+z) (3.2)

A being any representative from Ã.
In particular, for two local functions u, v,

Su, vT= C
x, z ¥ Z

d
C
n \ 1

C
Ã ¥ Ẽn

u(A+z) v(A+x+z)

=C
n \ 1

C
Ã ¥ Ẽn

ũ(Ã) ṽ(Ã)

We say that a function f: EQ R is translation invariant if f(A+x)=
f(A) for all sets A in E and all sites x of Zd. Of course, functions f̃ on Ẽ are
the same as translation invariant functions on E. Fix a subset A of Zd with
n points. There are n sets in the class of equivalence of A that contain the
origin.
Therefore, summing a translation invariant function f over all equiva-

lence classes Ã in Ẽn is the same as summing f over all sets B in En which
contain the origin and dividing by n:

C
Ã ¥ Ẽn

f(Ã)=
1
n

C
A ¥ En
A ¦ 0

f(A)

provided f(A)=f(A+x) for all A, x. Let Eg be the class of all finite subsets
of Zdg=Zd0{0} and let Eg, n be the class of all subsets of Z

d
g with n points.

Then, we may write

Su, vT=C
n \ 1

1
n

C
A ¥ En
A ¦ 0

ũ(A) ṽ(A)

=C
n \ 0

1
n+1

C
A ¥ E*, n

ũ(A 2 {0}) ṽ(A 2 {0})

In conclusion, if for a finitely supported function f: EQ R, we define
Tf: Eg Q R by

(Tf)(A)=f̃(A 2 {0})= C
z ¥ Z

d
f([A 2 {0}]+z)
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we have that

Su, vT=C
n \ 0

1
n+1

C
A ¥ E*, n

Tu(A) Tv(A) (3.3)

For n \ 0, denote by pn the projection that corresponds to Eg, n i.e.,
(pnf)(A)=f(A) 1{A ¥ Eg, n} and denote by O · , ·P the usual scalar product
on each set Eg, n: for f, g: Eg, n Q R,

Of, gP= C
A ¥ E*, n

f(A) g(A)

In view of formula (3.3), it is natural to introduce, for an integer
k \ −1, the Hilbert spaces L2(Eg, k) generated by finite supported func-
tions f: Eg Q R and the scalar product S · , ·T0, k defined by

Sf, gT0, k=C
n \ 0
(n+1)k Opnf, pngP

With this notation, for local functions f, g inÁn \ 1 Gn,

Sf, gT=STf, TgT0, −1

To summarize some observations on the transformation T, we need
some notation. For a subset A of Zdg and x, y, z in Zdg, denote by Ax, y the
set defined by

Ax, y=˛
(A0{x}) 2 {y} if x ¥ A, y ¨ A
(A0{y}) 2 {x} if y ¥ A, x ¨ A
A otherwise

(3.4)

and denote by SzA the set defined by

SzA=˛
A−z if z ¨ A
(A−z)0, −z if z ¥ A

(3.5)

Therefore, to obtain SzA from A in the case where z belongs to A, we first
translate A by −z, getting a new set which contains the origin, and we then
remove the origin and add site −z.
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Remark 3.1.

(a) The restriction of f to E1 is irrelevant for the definition of Tf(A) if
A is nonempty.
(b) Not every function fg: Eg Q R is the image by T of some function

f: EQ R since

(Tf)(A)=(Tf)(SzA) (3.6)

for all z in A.
(c) Let fg: Eg Q R be a finitely supported function satisfying (3.6):

fg(A)=fg(SzA) for all z in A. Define f: EQ R by

f(B)=˛ |B|
−1 fg(B0{0}) if B ¦ 0

0 otherwise
(3.7)

An elementary computations shows that Tf=fg. With this choice, which is
natural but not unique, f(0)=fg(f).
(d) T maps En into E*, n−1 lowering the degree of a function by one.

Thus the translations in the inner product S · , ·T effectively reduce the
degree by one while replacing the space Zd by Zdg.
(e) Formula (3.3) shows also that a local function f is in the kernel

of the inner product S · , ·T if and only if Tf vanishes, i.e., if and only if

C
x ¥ Z

d
f(A+x)=0

for all finite subsets A such that |A| \ 1. Examples of such functions are the
constants or the difference of the translations of a local function:
yyf−yxf.

To keep notation simple, most of the time, for a function f: EQ R, we
denote Tf by f̄. Real functions on E or on Eg are indistinctively denoted by
the symbols f, g.

3.2. Some Hilbert Spaces

We investigate in this subsection the action of the symmetric part of
the generator L on the basis {YA, A ¥ Eg}.
Fix a function u of degree n \ 1 and denote by u its Fourier coeffi-

cients. A straightforward computation shows that

L su= C
A ¥ En

(Lsu)(A) YA (3.8)
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where Ls is the generator of finite symmetric random walks evolving with
exclusion on Zd:

(Lsu)(A)=(1/2) C
x, y ¥ Z

d
s(y−x)[u(Ax, y)−u(A)] (3.9)

and Ax, y is the set defined by (3.4). Furthermore, an elementary computa-
tion, based on the fact that

C
z ¥ Z

d
f([B 2 {y}]+z)=Tf(SyB)

for all subsets B of Zdg, sites y not in B and finitely supported functions
f: EQ R, shows that for every set B in Eg

TLsu (B)=LsTu (B) (3.10)

where

(Lsū) (B)=(1/2) C
x, y ¥ Z

d
g

s(y−x)[ū(Bx, y)− ū(B)]

+C
y ¨ B
s(y)[ū(SyB)− ū(B)]

This computation should be understood as follows. We introduced an
equivalence relation in E when we decided not to distinguish between a set
and its translations. This is the same as assuming that all sets contain the
origin. If n particles evolve as exclusion random walks on Zd, one of them
fixed to be at the origin, two things may happen. Either one of the particles
which is not at the origin jumps or the particle we assumed to be at the
origin jumps. In the first case, this is just a jump on Zdg and is taken care by
the first piece of the generator Ls. In the second case, however, since we are
imposing the origin to be always occupied, we need to translate back the
configuration to the origin. This part corresponds to the second piece of
the generator Ls.
We are now in a position to define the Hilbert space induced by the

local functions C, the symmetric part of the generator L and the scalar
product S · , ·T. For two local functions u, v, let

Su, vT1=Su, (−L s) vT
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and let H1=H1(C, L s, S · , ·T) be the Hilbert space generated by local
functions f and the inner product S · , ·T1. By (3.8), (3.3), and (3.10) the
previous scalar product is equal to

− C
n \ 0

1
n+1

C
A ¥ E*, n

ū(A)Lsv(A)=− C
n \ 0

1
n+1

C
A ¥ E*, n

ū(A) (Ls v̄)(A)

=C
n \ 0

1
n+1

Opnū , (−Ls) pn v̄P

because Ls keeps the degree of the functions mapping Eg, n in Eg, n. This
formula leads to the following definitions. For each n \ 0, denote by
O · , ·P1 the scalar product on Eg, n defined by

Of, gP1=Of, (−Ls) gP

and denote by H1(Eg, n) the Hilbert space on Eg, n induced by the finitely
supported functions and the scalar product O · , ·P1. The associated norm is
denoted by ||f||21=Of, (−Ls) fP. Furthermore, for an integer k \ −1, denote
by H1, k=H1(Eg, Ls, k) the Hilbert space induced by the finite supported
functions f, g: Eg Q R and scalar product

Sf, gT1, k=Sf, (−Ls) gT0, k=C
n \ 0
(n+1)k Opnf, (−Ls) pngP

The associated norm is denoted by || · ||1, k so that ||f||
2
1, k=Sf, fT1, k

Three observations are in order. First of all, in the definition of the
scalar product S · , ·T1, k, because Lsf(f)=0 for all f, it is irrelevant if the
summation starts from n=0 or from n=1. On the other hand, it follows
from the previous relation that

||f||21, k=C
n \ 0
(n+1)k ||pnf||

2
1

Finally, for every local function u, v,

Su, vT1=STu, TvT1, −1

vanishes for functions u and v of degree 0 or 1. Moreover, for every n \ 1
and every finitely supported functions f, g: Eg, n Q R,

Of, gP1=
1
4 C
x, y ] 0

s(y−x) C
A ¥ E*, n

[g(Ax, y)−g(A)] [f(Ax, y)− f(A)]

+12 C
y ¥ Z

d
s(y) C

A ¥ E*, nÂ ¦ y

[g(SyA)−g(A)] [f(SyA)− f(A)]
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To introduce the dual Hilbert spaces of H1, H1, for a local function u,
consider the semi-norm || · ||−1 given by

||u||−1=sup
v
{2Su, vT−Sv, vT1}

where the supremum is taken over all local functions v. Denote by H−1=
H−1(C, L s, S · , ·T) the Hilbert space generated by the local functions and
the semi-norm || · ||−1.
Recall the definition of the spaces Gn introduced at the beginning of

Section 3.1. Since L s keeps the degree of a function and since the spaces Gn
are orthogonal, for local functions of fixed degree, we may restrict the
supremum to local functions of the same degree so that

||f||2−1=C
n \ 1
||pnf||

2
−1

where pnf stands for the projection of f on Gn. Moreover, we will see later
in (4.1) that functions of degree 1 which do not vanish in L2(S · , ·T) have
infinite H−1 norm.
In the same way, for an integer n \ 1 and a finitely supported function

u: Eg, n Q R, let

||u||2−1=sup
v

{2Ou, vP−Ov, vP1}

where the supremum is carried over all finitely supported functions
v: Eg, n Q R. Denote by H−1=H−1(Eg, n) the Hilbert space induced by the
finitely supported functions u: Eg, n Q R and the semi-norm || · ||−1.
For a integer k \ −1, define the H−1, k=H−1(Eg, Ls, k) norm of a

finite supported function u: E+Q R by

||u||−1, k=sup
v

{2Su, vT0, k−Sv, (−Ls) vT0, k}

where the supremum is carried over all finitely supported functions
v: Eg Q R. Denote by H−1, k=H−1(Eg, Ls, k) the Hilbert space induced by
this semi-norm and the space of finite supported functions. Here again,
since Ls does not change the degrees of a function, for every finitely
supported u: Eg Q R,

||u||2−1, k=C
n \ 1
(n+1)k ||pnu||

2
−1

On Viscosity and Fluctuation-Dissipation in Exclusion Processes 339



and for any local function u,

||u||−1=||Tu||−1, −1

3.3. The Fourier Coefficients of the Generator L

We conclude this section deriving explicit expressions for the generator
L on the basis {YA, A … Zd}. A long and elementary computation gives the
following dual representation: For every local function u=;A ¥ E u(A) YA,

Lu= C
A ¥ E

(Lau)(A) YA,

whereLa=Ls+(1−2a)Ld+`q(a) (L++L−),

(Ldu)(A)= C
x ¥ A, y ¨ A

a(y−x){u(Ax, y)−u(A)}

(L+u)(A)=2 C
x ¥ A, y ¥ A

a(y−x) u(A0{y})

(L−u)(A)=2 C
x ¨ A, y ¨ A

a(y−x) u(A 2 {y})

and Ls is defined by (3.9). Furthermore, for any function u: EQ R,
TLau=LaTu, provided

La=Ls+(1−2a) Ld+`q(a) {L++L−}

and, for A ¥ Eg, v: Eg Q R a finitely supported function,

(Ldv)(A)= C
x ¥ A, y ¨ A
x, y ] 0

a(y−x){v(Ax, y)−v(A)}+C
y ¨ A
y ] 0

a(y){v(SyA)−v(A)}

(L+v)(A)=2 C
x ¥ A, y ¥ A

a(y−x) v(A0{y})

+2 C
x ¥ A
a(x){v(A0{x})−v(Sx[A0{x}])}

(L−v)(A)=2 C
x ¨ A, y ¨ A
x, y ] 0

a(y−x) v(A 2 {y})
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4. APPROXIMATIONS IN H−1

From this section on, we work in dimension d \ 3. All finite constants
denoted by C0 are allowed to depend on the transition probability p( · ) and
only on p( · ).
The main goal of this section is to show that finitely supported func-

tions can be approximated in H−1 by finitely supported functions in the
image of the operator La. We start proving that all finitely supported func-
tions w: Eg Q R such that w(f)=0 are in H−1.
Several estimates on the operators Ld, L− , L+ are assumed here and

proved in Section 7.

Theorem 4.1. A finitely supported function w: Eg Q R belongs to
H−1, k(Eg, Ls) for every k \ 1 provided w(f)=0.

This result states that any local function w in Án \ 2 Gn belongs to
H−1(C, L s, S · , ·T). Notice that we are requiring the degree to be greater or
equal to 2. The reason is simple. Any local function f of degree one has H1
norm equal to 0: if f=;x ¥ Z

d cxYx,

Sf, LfT=Sf, L sfT

= C
x, y ¥ Z

d
cxcy C

z, w ¥ Z
d
s(w)OYx+z, Yy+w−YyP=0 (4.1)

There are thus two possibilities. Either ;x cx=0, in which case f=0
both in L2(S · , ·T) and in H1 or ;x cx ] 0 in which case f=0 in H1 but
not in L2. In this later circumstance, f does not belong to H−1. Therefore, a
function of degree one belongs to H−1 only if it vanishes in L2, i.e., only if
;x cx=0. This explains the restriction on the degree in the previous
theorem.
Theorem 4.1 is proved in the same way as Lemma 2.1 in (13). One has

to show that the Green function associated to the generator Ls restricted to
Eg, n, for some n \ 1, is finite. This is done by comparing the Green function
with the one associated to independent random walks, which is finite
because d \ 3.
Recall from Remark 3.1 in the previous section that for a finitely

supported function f: EQ R, (Tf)(A)=(Tf)(SzA) for all z in A. Thus, for
n \ 0, denote by In the closed subspace of L2(Eg, n) of all functions f for
which (3.6) holds and let I=Án \ 0 In.
We are now in a position to state the main result of this section. We

have just seen that all finitely supported functions w: Eg Q R such that
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w(f)=0 belong to H−1. We now prove that these functions can be
approximated in H−1 by finitely supported functions in the image of the
operator La.

Theorem 4.2. Fix a finitely supported function w: Eg Q R in I such
that w(f)=0. For each e > 0 and k \ −1, there exists a finitely supported
function f: Eg Q R such that

||Laf+w||−1, k [ e

Moreover, we may take f in I and f(f)=0.

The proof of this result requires several estimates on the resolvent
equation (4.2). The existence of a solution in L2 of the resolvent equation
stated in the next lemma requires a proof because La is not the generator of
a Markov process.

Lemma 4.3. For each l > 0, there exists a function ul in I which
solves the resolvent equation

lul−Laul=w (4.2)

Proof. For n \ 1, let Pn be the projection on 1n
j=1 Eg, j: Pn=

; 1 [ j [ n pj and let Mn=Pn(L++L−)Pn. We first prove the existence of a
solution in L2 of the truncated resolvent equation

lul, n−{Ls+(1−2a) Ld+`q(a)Mn} ul, n=w (4.3)

By Lemma 7.1, the operators Ls, Ld, and L± are bounded on
L2(1n

j=1 Eg, j) for each fixed n \ 1. There exists, in particular, a solution for
l large enough. Ls is a symmetric negative semi-definite operator while, by
Lemma 7.2, Ld and L++L− are anti-symmetric. Since Pn is a projection,
for any f in L2(Eg), Of,MnfP=Of,Pn(L++L−)PnfP= OPnf, (L++L−)PnfP
=0, so thatMn is also anti-symmetric. Therefore, taking the scalar product
on both sides of the previous identity with respect to ul, n we obtain by
Schwarz inequality that

l ||ul, n ||0 [ ||w||0.

Here || · ||0 stand for the L2(Eg) norm. By the proof of Proposition I.2.8
(b) in ref. 12, there exists a solution of (4.3) for every l > 0. Moreover, ul, n
belongs to I because w does.
Up to this point we proved the existence of a solution of the resolvent

equation (4.3). The previous estimate shows that the sequence {ul, n, n \ 1}
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is uniformly bounded in L2 for each l > 0. Moreover, by Lemma 7.7 and
the proof of Lemma 2.5 in ref. 8 or the proof of Theorem 5.1 in ref. 13,
since w is finitely supported, for every k \ 1,

l C
j \ 1
jk ||pjul, n ||0 [ C(k, w)

uniformly over n. Let f be a limit point of the sequence {ul, n, n \ 1}. f
inherits the previous bound and belongs therefore to the domain of the
operators Ls, Ld, L± . Furthermore, taking scalar products with finitely
supported functions, it is easy to show that any limit point of this sequence
is a solution of the resolvent equation (4.2). Finally, f belongs to I because
each function ul, n belongs and I is closed. This proves the lemma. L

By the proof of Lemma 2.5 in ref. 8 or the proof of Theorem 5.1 in
ref. 13 we may deduce from Lemma 7.7 the following bound on the solu-
tion ul of the resolvent equation (4.2).

Theorem 4.4. Let ul be the solution of the resolvent equation (4.2).
For any positive integer k, there exists a finite constant Ck depending only
on k such that

sup
l \ 0
{l ||ul ||

2
0, k+||ul ||

2
1, k} [ Ck ||w||

2
−1, k (4.4)

The following estimate on the asymmetric part of the generator that
preserves the degree is needed in the proof of Theorem 4.2.

Lemma 4.5. Let ul be the solution of the resolvent equation (4.2).
For any k \ 1, there exists a finite constant Ck, depending only on k, such
that

||Ldul ||
2
−1, k [ Ck ||w||

2
−1, k+3.

Proof. Let w1=w+`q(a) [L++L−] ul so that

lul−{Ls+(1−2a) Ld} ul=w1.

By Lemma 7.7 there exists a finite constant C0 such that

||pnw1 ||
2
−1 [ 2 ||pnw||

2
−1+C0n C

n+1

j=n−1
||pjul ||

2
1 (4.5)

for all n \ 1.
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Notice that the operator Ls+(1−2a) Ld does not change the degree of
a function. We may therefore examine equation (4.6) on each set Eg, n:

lpnul−{Ls+(1−2a) Ld} pnul=pnw1 (4.6)

Since n is fixed until estimate (4.10), we omit the operator pn in the
next formulas.
Following Section 6 of ref. 13, we approximate this operator by a

convolution operator that can be analyzed through Fourier transforms. Fix
n \ 1 and let Xn=(Zd)n. We consider a set A in Eg, n as an equivalent class
on n! sets of distinct points of Zdg. A function f: Eg, n Q R can be lifted into a
symmetric function Bf on Xn, that vanishes on Xn 0En, g: Bf(x1,..., xn)=0 if
xi=xj for some i ] j or if xi=0 for some 1 [ i [ n. The operators Ls, Ld
can also be extended in a natural way to Xn. Denote by {ej, 1 [ j [ n} the
canonical basis of Rn, by 1 the vector ; 1 [ j [ n ej and consider on Xn the
operators L̃s, L̃d defined by

(L̃sf)(x)= C
1 [ j [ n
z ¥ Z

d

s(z){f(x+zej)− f(x)}+ C
z ¥ Z

d
s(z){f(x−z1)− f(x)}

(L̃df)(x)= C
1 [ j [ n
z ¥ Z

d

a(z){f(x+zej)− f(x)}+ C
z ¥ Z

d
a(z){f(x−z1)− f(x)}

(4.7)

In this formula and below, x=(x1,..., xn) is an element of Xn, so that
each xj belongs to Zd and x+zej=(x1,..., xj−1, xj+z, xj+1,..., xn), x+z1=
(x1+z,..., xn+z).
Denote by || · ||Xn, 1 the H1 norm associated to the generator L̃s: for each

function f: Xn Q R,

||f||2Xn, 1=
1
n!

C
x ¥Xn

f(x)(−L̃s) f(x)

and denote by || · ||Xn, −1 its dual norm defined by

||f||2Xn, −1=
1
n!

C
x ¥Xn

f(x)(−L̃s)−1 f(x)

Lifting the resolvent equation (4.6) to Xn and adding and subtracting
L̃sBul+(1−2a) L̃dBul, we obtain that

lBul−{L̃s+(1−2a) L̃d} Bul=w2 (4.8)
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where

w2=Bw1+{BLs− L̃sB} ul+(1−2a){BLd− L̃dB} ul

We claim that w2 has finite H−1(Xn) norm. Indeed, for each n \ 1, by
(7.5) and Lemma 7.6 below, there exists a finite constant C0 such that

||pnBw1 ||
2
Xn, −1 [ ||pnw1 ||

2
−1

||BLspnul− L̃sBpnul ||
2
Xn, −1 [ C0n

2 ||pnul ||
2
1

||BLdpnul− L̃dBpnul ||
2
Xn, −1 [ C0n

2 ||pnul ||
2
1

so that

||pnw2 ||
2
Xn, −1 [ 2 ||pnw1 ||

2
−1+C0n

2 ||pnul ||
2
1 (4.9)

for some finite constant C0.
It remains to examine the resolvent equation (4.8) through Fourier

analysis. Let Tn, d=[−p, p]nd and denote by ûl: (Td)nQ C the Fourier
transform of Bul:

ûl(k)= C
x ¥Xn

e ix ·k (Bul)(x).

In this formula, x ·k=; 1 [ j [ n xj · kj. It follows from the resolvent equation
(4.8) that ûl is the solution of

lûl(k)−{L̂s(k)+(1−2a) L̂d(k)} ûl(k)=ŵ2(k)

where L̂s, L̂d are the functions associated to the operators L̃s, L̃d:

− L̂s(k)=2 C
1 [ j [ n
z ¥ Z

d

s(z){1− cos(kj · z)}+2 C
z ¥ Z

d
s(z) 31− cos 1 C

n

j=1
kj · z24

− L̂d(k)=2i C
1 [ j [ n
z ¥ Z

d

a(z) sin(kj · z)−2i C
z ¥ Z

d
a(z) sin 1 C

n

j=1
kj · z2

The H−1(Xn, L̂s) norm of a function v: Xn Q R has a simple and explicit
expression in terms of the Fourier transform:

||v||2Xn, −1=
−1

n!(2p)nd
F
Tn, d

dk |v̂(k)|2
1

L̂s(k)

On Viscosity and Fluctuation-Dissipation in Exclusion Processes 345



Since Bul is the solution of the resolvent equation (4.8), for every
l > 0,

||L̃dBul ||
2
Xn, −1=

−1
n!(2p)nd

F
Tn, d

: L̂d(k)

l− L̂s(k)−(1−2a) L̂d(k)
:2 |ŵ2(k)|2

L̂s(k)
dk

It follows from the explicit formulas for the functions L̂s, L̂d and a
Taylor expansion for |k| small that the previous expression is bounded by

−C0
n!(2p)nd

F
Tn, d

|ŵ2(k)|2

L̂s(k)
dk=C0 ||w2 ||

2
Xn, −1

for some finite constant C0. We have thus proved that

||L̃dBul ||
2
Xn, −1 [ C0 ||w2 ||

2
Xn, −1 (4.10)

We may now conclude the proof of the Lemma 4.5. Fix n \ 1. By
(7.5), by the estimate presented just before (4.9) and by the inequality just
derived, there exists a finite constant C0, which may change from line to
line, such that

||pnLdul ||
2
−1=||Ldpnul ||

2
−1 [ C0n ||BLdpnul ||

2
Xn, −1

[ C0n{n2 ||pnul ||
2
1+||L̃dBpnul ||

2
Xn, −1}

[ C0{n3 ||pnul ||
2
1+n ||pnw2 ||

2
Xn, −1}

In particular, by (4.9) and (4.5),

||pnLdul ||
2
−1 [ C0{n

3 ||pnul ||
2
1+n ||pnw1 ||

2
Xn, −1}

[ C0 3n3 C
n+1

j=n−1
||pjul ||

2
1+n ||pnw||

2
Xn, −1
4 (4.11)

It remains to recall the definition of the norm || · ||−1, k and the state-
ment of Theorem 4.4 to conclude the proof. L

Notice that the constantCk, which appears in the statement of Lemma 4.5,
depends on k only because the one which appears in Theorem 4.4 depends
on k. We have now all elements to prove Theorem 4.2.

Proof of Theorem 4.2. The proof is done in two steps. We first use
the resolvent equation (4.2) to obtain a sequence {vj; j \ 1} of functions in
L2(Eg, k) such that

lim
jQ.
||Lavj+w||−1, k=0
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The sequence vj is obtained through convex combinations (in l) of the
solutions ul of the resolvent equation (4.2). Details can be found at the
end of the proof of Lemma 2.1 in ref. 8 or at the beginning of the proof of
Lemma 2.8 in ref. 10.
At this point, it remains to show the existence, for each fixed j and

e > 0, of a finitely supported function f: Eg Q R such that ||Laf−Lavj ||−1, k
[ e. To prove the existence of such function f, assume that f vanishes on
1j \ n Eg, j and recall the decomposition of the operator La to deduce that

||Laf−Lavj ||−1, k

[ ||L+(f−Pnvj)||−1, k+||L−(f−Pnvj)||−1, k

+||Ld(f−Pnvj)||−1, k+||Ls(f−Pnvj)||−1, k+||La(I−Pn) vj)||−1, k
(4.12)

where Pn=; j [ n pj and I is the identity. We estimate each term on the
right hand side separately. By Lemma 7.7, the first term on the right hand
side is such that

||L+(f−Pnvj)||
2
−1, k=C

n

a=0
(a+1)k ||L+pa{f−vj}||

2
−1

[ C0 C
n+1

a=1
a
k+1 ||paf−pavj ||

2
1 [ C0 C

n+1

a=1
a
k+2 ||paf−pavj ||

2
0

The second term on the right hand side of (4.12) is estimated in the
same way. By Lemma 7.4, the third one is such that

||Ld(f−Pnvj)||
2
−1, k=C

n

a=1
a
k ||Ldpa(f−vj)||

2
−1 [ C0 C

n

a=1
a
k+1 ||pa(f−vj)||

2
0

for some finite constant C0. The fourth member on the right hand side of
(4.12) is easily estimated by exactly the same arguments and by using again
Lemma 7.4.
Finally, since vj is a convex combination of the solutions of the resol-

vent equation (4.2), by (4.11),

||La(I−Pn) vj)||
2
−1, k=C

a > n
a
k ||Lapavj ||

2
−1

[ C
a \ n
a
k+3 ||pavj ||

2
1+C

a \ n
a
k+1 ||paw||

2
−1
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Now, for e > 0 fixed, since w is finitely supported, by Theorem 4.4 and
Theorem 4.1 there exists n0 > 0 large enough for the last quantity to be
bounded by e. For this fixed n0, find a finitely supported function
f: 1n [ n0 Eg, n Q R for which all previous expressions are bounded by e,
which is possible because vj belongs to L2(Eg, k).
It remains to check that we may take f in I with f(f)=0. The first

property follows from the fact, easy to verify, that the operators Ls, Ld, L+,
L− map the closed subspace I of L2(Eg) into I. In particular, the solu-
tions of the resolvent equations, as well as their convex combinations,
belong to I so that f can be taken in I.
The second requirement follows from the fact that (Lgf)(f)=0 for

any finitely supported function f in I, where Lg stands for any of the four
operators Ls, Ld, L+, L− and from the fact that (L+f)({x})=0 for all x
in Zdg. These two properties show that we may set the value of f at f to be 0
without changing Laf.
The special features of the operators Lg just used are proved in the

beginning of Section 7. This concludes the proof. L

5. THE FLUCTUATION-DISSIPATION THEOREM

We consider in this section the general asymmetric simple exclusion in
dimension d \ 3. Here again, all finite constants C0 which appear in the
statement of the theorems may depend only on the transition probability p( · ).
We prove in this section a fluctuation–dissipation theorem, Theorem 5.3

below, also called the Boltzmann–Gibbs principle. It allows the replace-
ment of a local function w in Án \ 2 Gn by the sum of gradients
g(x+ej)−g(x) and local functions in the range of the generator. This
result is the main step in the proof of Gaussian fluctuations of the empiri-
cal measure around the hydrodynamic limit (cf. ref. 4).
Denote by Ena the expectation on the path space D(R+, X) corre-

sponding to the Markov process with generator given by (2.1) and starting
from the stationary measure na. The first result states that a local function
f in H−1(L s, S · , ·T) has a finite space-time variance in the diffusive
scaling:

Theorem 5.1. Fix a smooth function G: RdQ R with compact
support, a local function f of degree n \ 2, T > 0 and a vector v in Rd.
There exists a finite constant C0 such that

lim sup
EQ 0

Ena
5 sup
0 [ t [ T

1Ed/2+1 F tE
−2

0
C
x ¥ Z

d
G(E(x−rv)) f(yxgr) dr2

26

[ C0T ||G||
2
L2 ||Tf||

2
−1
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Proof. Set GEr(x)=G(E(x−rv)) and recall Lemma 4.3 in ref. 2 to
obtain that

Ena
5 sup
0 [ t [ T

1Ed/2+1 F tE
−2

0
dr C
x ¥ Z

d
GEr(x) f(yxgr) dr2

26

[ 14 F
T

0
dr Ed 7 C

x ¥ Z
d
GEr(x) yxf, (−L

s)−1 C
x ¥ Z

d
GEr(x) yxf8 (5.1)

Fix a local function g of degree n \ 2. Let Ls be the generator defined
in (3.9) and g be the Fourier coefficient of g. Then,

Og, (−L s)−1 gP=Og, (−Ls)−1 gP

where the last scalar product is on En. Recall from Section 4 that
Xn=(Zd)n. The proof of Lemma 7.5 shows that the previous expression is
bounded by

C0
(n−1)!

OBg, (−L2 s0)
−1 BgPXn

for some finite constant C0, where L2
s
0 stands for the generator of n inde-

pendent random walks on Zd with transition probability s( · ) and Bg for
the extension of g to Xn. Denote by Gn( · , · ) the Green function associated
to the generator L2 s0 restricted to Xn. The previous expression can be
written as

C0
(n−1)!

C
x, y ¥Xn

(Bg)(x) Gn(x, y)(Bg)(y)

In particular, for g=;x ¥ Z
d GEr(x) yxf, the right hand side of (5.1) is

bounded by

C0
(n−1)!

F
T

0
dr Ed C

z, w ¥ Z
d
GEr(z) G

E
r(w) C

x, y ¥Xn

Bf(x+z1) Gn(x, y) Bf(y+w1)

A change of variables permits to rewrite the expression inside the
integral as

Ed C
z, w ¥ Z

d
GEr(z) G

E
r(z−w) C

x, y ¥Xn

Bf(x) Gn(x, y+w1) Bf(y)
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Since f is a local function, f has finite support. In particular, the sums
over x, y are carried over finite sets. On the other hand, replacing GEr(z−w)
by GEr(z), we write the previous expression as

Ed C
z ¥ Z

d
GEr(z)

2 C
x, y ¥Xn

Bf(x) C
w ¥ Z

d
Gn(x, y+w1) Bf(y)

+Ed C
z, w ¥ Z

d
GEr(z){G

E
r(z−w)−G

E
r(z)} C

x, y ¥Xn

Bf(x) Gn(x, y+w1) Bf(y)

We claim that the second term is bounded above by C(f, G) E1/2 for
some finite constant depending on f and G. Indeed, since G has a bounded
derivative and Bf a finite support, the second line is less than or equal to

C(||NG||., f ) E1/2 sup
x ¥X

−
f

C
w ¥ Z

d
|w|1/2 Gn(0, x+w1). (5.2)

In this formula, X−
f is the set of all sites which can be written as dif-

ference of two points in the support of Bf: X−
f ={y−x, Bf(x) Bf(y) ] 0}.

Since Gn(0, z) is the Green function of n independent random walks on Zd,
it decays as |z|2−nd. The sum over w is thus finite, uniformly over x, as soon
as (n−1) d > 5/2, inequality which is fulfilled because we are assuming
d \ 3 and n \ 2. This proves (5.2).
Collecting all previous estimates we obtain that the expectation which

appears in the statement of the lemma is bounded above by

C0
(n−1)!

F
T

0
dr Ed C

z ¥ Z
d
GEr(z)

2 C
x, y ¥Xn

Bf(x) C
w ¥ Z

d
Gn(x, y+w1) Bf(y)

plus a remainder which converges to 0 as E a 0. Denote by G̃n( · , · ) the
Green function associated to the generator L̃s defined in (4.7) and restricted
to Xn. An elementary computation shows that

C
x, y ¥Xn

Bf(x) C
w ¥ Z

d
Gn(x, y+w1) Bf(y)= C

x, y ¥Xn−1

Bf̄(x) G̃n−1(x, y) Bf̄(y)

=(n−1)! ||pn−1Bf̄ ||2−1, Xn−1

On the right hand side, f̄ stands for Tf. Notice that n is replaced by
n−1 in the right hand side because we are fixing a particle at the origin.
The last time integral is thus equal to

C0 F
T

0
dr Ed C

z ¥ Z
d
GEr(z)

2 ||Bf̄||2Xn, −1 [ C0 F
T

0
dr Ed C

z ¥ Z
d
GEr(z)

2 ||f̄||2−1
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where in the last step we used Lemma 7.5. As E a 0 this integral converges
to

C0T ||G||
2
L2 ||f̄||

2
−1

which concludes the proof of the lemma. L

Corollary 5.2. Fix a smooth function G: RdQ R with compact
support, a local function f in Án \ 2 Gn, T > 0 and a vector v in Rd. There
exists a finite constant C0 such that

lim sup
EQ 0

Ena
5 sup
0 [ t [ T

:Ed/2+1 F tE
−2

0
C
x ¥ Z

d
G(E(x−rv)) f(yxgr) dr :

26

[ C0T ||G||
2
L2 ||Tf||

2
−1, 0

Proof. Since the symmetric part of the generator does not change the
degree of local functions, for a local function g inÁn \ 2 Gn,

Og, (−L s)−1gP=C
n \ 2

Opn g, (−L s)−1 pn gP=C
n \ 2

Opng, (−Ls)−1 pngP

and we may proceed as in the proof of Theorem 5.1. L

Fix a local function w in Án \ 2 Gn and denote by w its Fourier coeffi-
cients and by w̄ the finitely supported function Tw: Eg Q R. For each l > 0,
let ul be the solution of the resolvent equation

lul−Laul=w̄

We proved in Section 4 the existence of the solution ul of the resolvent
equation and some of its properties. In the next section, among several
other properties, we show the existence of a subsequence lk for which the
sequence ulk (a, z) converges, as k ‘., uniformly in a in [0, 1], to some
limit, denoted by Dz(a):

Dz(a)= lim
kQ.

ulk (a, {z}) (5.3)

for each z in Zdg.

Theorem 5.3. Fix a local function w in Án \ 2 Gn and a smooth
function G: RdQ R with compact support. There exists a sequence of local
functions um such that

lim sup
mQ.

lim sup
EQ 0

Ena
5 sup
0 [ t [ T

1Ed/2+1 F tE
−2

0
C
x ¥ Z

d
G(Ex) yxWm(gs) ds2

26=0
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where

Wm(g)=Wa, m(g)=w−Lum+`q(a) C
z ¥ Z

d
a(z) Dz(a){Yz−Y0}

We will refer to Theorem 5.3 as the fluctuation-dissipation theorem. It
will be the basic ingredient to study the equilibrium fluctuations for the
density field.

Proof. Recall that w̄=Tw. Since w belongs toÁn\ 2Gn, by Theorem 4.2
with k=0, there exists a sequence of finitely supported functions
vm: Eg Q R such that vm(f)=0, vm belongs to I and

lim
mQ.

||w̄−Lavm ||−1=0

Since vm satisfies (3.6), in view of (3.7), there exists a finitely supported
function um: EQ R such that Tum=vm. Moreover, um(A) ] 0 only if A
contains the origin and um({0})=0 because vm(f)=0. Let um be the local
function defined by um=;A ¥ E um(A) YA and let Ŵm be the local function
inÁn \ 2 Gn defined by

Ŵm=w−{Lum−p1Lum}

By Corollary 5.2,

lim sup
EQ 0

Ena
5 sup
0 [ t [ T

1Ed/2+1 F tE
−2

0
C
x ¥ Z

d
G(Ex) yxŴm(gs) ds2

26

[ C0T ||G||
2
L2 ||TŴm ||

2
−1 (5.4)

for some finite constant C0. An elementary computation gives that

p1(Lu)=− C
x, y ¥ Z

d
s(y−x){u(y)−u(x)}{Yy−Yx}

−
1−2a
2

C
x, y ¥ Z

d
a(y−x){u(y)+u(x)}{Yy−Yx}

+`q(a) C
x, y ¥ Z

d
a(y−x) u(x, y){Yy−Yx}

Since um({x})=0 for every x in Zd, um(A) ] 0 only if A contains the
origin, um(A)=|A|−1 vm(A0{0}), we have that

p1(Lu)=`q(a) C
x ¥ Z

d
a(x) vm(x){Yx−Y0}
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which vanishes in L2(q, S · , ·T) so that Tp1(Lu)=0. In particular,
TŴm=w̄−Lavm and the right hand side of (5.4) is bounded above by

C0T ||G||
2
L2 ||w̄−Lavm ||

2
−1

Since this expression vanishes as m ‘., all we need to prove is that

lim sup
mQ.

lim sup
EQ 0

Ena
5 sup
0 [ t [ T

1Ed/2+1 F tE
−2

0
C
x ¥ Z

d
G(Ex) yxW̃m(gs) ds2

26=0

where

W̃m=p1Lum−`q(a) C
z ¥ Z

d
a(z) Dz(a){Yz−Y0}

By the explicit formula for p1Lum obtained above,

W̃m=`q(a) C
x ¥ Z

d
a(x){vm(x)−Dx(a)}{Yx−Y0}

Since na is a stationary state, by Schwarz inequality, the previous
expectation is bounded above by

Ed−2T2Ena51 C
x ¥ Z

d
G(Ex) yxW̃m(g)2

26

A change of variables gives that this expression is equal to

Ed−2q(a) T2 C
x ¥ Z

d

1 C
y ¥ Z

d
a(y){G(E[x−y])−G(Ex)}{vm(y)−Dy(a)}2

2

A Taylor expansion shows that this expression converges, as E a 0, to

q(a) T2 F
R
d
da {(NG)(a) ·Rm}2

where Rm=(R
1
m,..., R

d
m), R

j
m=;y ¥ Z

d a(y) yj{vm(y)−Dy(a)}. By the
definition of Dy(a), R

j
m Q 0 as m ‘. because vm is constructed as convex

combinations of ulk , the solution of the resolvent equation (4.2). The
integral therefore tends to 0. L
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6. REGULARITY OF VISCOSITY COEFFICIENTS

Fix a local function w in Án \ 2 Gn and denote by w its Fourier coeffi-
cients and by w̄ the finitely supported function Tw: Eg Q R. For each l > 0,
let ul be the solution of the resolvent equation

lul−Laul=w̄

We proved in Section 4 the existence of the solution ul of the resolvent
equation. We prove in this section the existence of a subsequence lk for
which ulk ( · , z) converges uniformly in [0, 1], as well as all its derivatives,
to a smooth function Dz( · ).
The proof is very close to the one presented in ref. 11 for the self dif-

fusion in the symmetric case, so we only show here the main points.
We want to show that there exists a subsequence lk a 0, such that, for

each z such that |a(z)| > 0, ulk (a, {z}) converges uniformly in a to a smooth
function. To prove the existence of such subsequence it is enough to show
that ul(a, {z}) are smooth function of a for each l > 0 and each z, and

sup
l > 0

sup
0 [ a [ 1

|u (j)l (a, {z})| <.

where u (j)l (a, {z}) stands for the jth derivative of ul.
By Lemma 3.1 of ref. 13, we have the bound

|u (j)l (a, {z})| [ C0 ||u
(j)
l (a, · )||1

for some finite constant C0 depending only on p( · ). With the iterated use
of Theorem 4.4, we will prove that, for any k and j,

sup
l > 0

sup
0 [ a [ 1

||u (j)l (a, · )||1, k <.

Since the coefficients of La are not smooth at the boundary of [0, 1],
we reparameterize by a=sin2 t, t ¥ [0, 2p], as done in ref. 11. We obtain

L(t)=Ls+(cos2 t− sin2 t) Ld+(sin t cos t){L++L−}

and then we consider the equation

lvl(t)−L(t) vl(t)=w

Since w does not depends on a, we have ul(a(t))=vl(t). So if we
prove that v (j)l (t) are uniformly bounded in the || · ||1, k norm, we obtain the
boundedness in the same norm for ul(a) for a in the interior of [0, 1].
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The extra argument to extend this smoothness up to the boundary is
identical to the one used in ref. 11 (see the end of the proof of Theorem 5.1
in there).
Differentiating formally L(t) in t, we obtain

LŒ(t)=−4(sin t cos t) Ld+(cos2 t− sin2 t){L++L−}

By Lemma 5.2 of ref. 11, vl(t) is differentiable in t, and its derivative
v −l(t) satisfies

lv −l(t)−L(t) v
−

l(t)=LŒ(t) vl(t)

As a consequence of Lemma 7.7, Lemma 4.5 and the explicit form
of L(t), there exists a constant Ck depending only on k

||LŒ(t) vl(t)||−1, k [ Ck ||w̄||−1, k+3

Then if we apply Theorem 4.4 to Eq. (6.1), we obtain the bound
||v −l(t)||−1, k uniform in t and l. The argument can be iterated exactly as
done in ref. 11, obtaining similar bounds for all the derivatives v (j)l (t).

7. ESTIMATES ON THE OPERATORS Ld, L+, L−

We prove in this section some elementary identities or estimates
involving the operators Ld, L+, L− . Recall that all functions f: Eg Q R
which come from a local function f through the transformation T of the
Fourier coefficients of f are such that f(SzA)=f(A) for all z in A. Recall
also the definition of the spaces In given just before the statement of
Theorem 4.2.
A simple computation shows that the space I is left invariant by the

operators Ls, Ld, L+, L− : For every n \ 1 and every f: In Q R,

Lsf ¥In, Ldf ¥In, L− f ¥In−1, L+f ¥In+1 (7.1)

This claim can be proved in two different ways. Either by a direct
computation or by reconstructing a local function f from f. More preci-
sely, to prove that Lsfg belongs to In if fg belongs to In, let f be given by
(3.7) so that Tf=fg. By (3.10), TLsf=Lsfg, which proves that Lsfg belongs
to I.
We turn now to an elementary identity to illustrate the fact that the

space I enjoys some special properties. For every f: Eg, 1 Q R,

(L− f)(f)=−2 C
x ] 0
a(x) f({x})
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In particular, (L− f)(f)=0 for all f in I1 because in this space
f({x})=f({−x}) and a( · ) is anti-symmetric. In contrast, (L+g)({x})=0
for all functions g: Eg, 0 Q R so that, for all f in I1 and all g: Eg, 0 Q R,

L− f=0, L+g=0 (7.2)

We turn now to the proof of some estimates involving the operators
Ls, Ld, L− , and L+. The first lemma states that the operators Ls, Ld, L− ,
and L+ are bounded in L2(Eg, n) for each fixed n \ 1.

Lemma 7.1. There exists a finite constant C0 such that

||Af||20 [ C0n
2 ||f||20

for each f in L2(Eg, n), were the operator A stands for Ls, Ld, L+, or L− .

Proof. We only prove the estimate concerning L− , the other ones
being elementary. Fix a function f: Eg, n Q R in L2 and keep in mind that
L− f maps Eg, n−1 in R. By the explicit expression for L− and a change of
variables,

||L− f||
2
0 [ 4 C

A ¥ E*, n−1

3 C
x, y ¨ A
x, y ] 0

a(y−x) f(A 2 {y})4
2

Since ;x ¥ Z
d a(x)=0, the previous expression is less than or equal to

8 C
A ¥ E*, n−1

3 C
y ¨ A
y ] 0

a(y) f(A 2 {y})4
2

+8 C
A ¥ E*, n−1

3 C
y ¨ A, y ] 0
x ¥ A

a(y−x) f(A 2 {y})4
2

By Schwarz inequality, since a( · ) is absolutely bounded and
;x ¥ Z

d |a(x)| is finite, this expression is less than or equal to

C0n C
A ¥ E*, n−1

C
y ¨ A
y ] 0

f(A 2 {y})2

for some finite constant C0. To sum over A in Eg, n−1 and over y ] 0, y ¨ A
is the same as to sum over B in Eg, n with a multiplicity factor n because all
sets are counted n times. The previous expression is thus equal to

C0n2 C
A ¥ E*, n

f(A)2

which concludes the proof of the lemma. L

It follows from the next statement that the operators Ld and L++L−
are anti-symmetric on I 5 L20, −1(Eg).
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Lemma 7.2. For every n \ 1 and every finitely supported functions
u, v: Eg, n Q R

OLdu, vP=−Ou, LdvP

For every finitely supported functions f, g in In−1, In respectively,

1
n+1

OL+f, gP=−
1
n
Of, L−gP.

Proof. The first identity is elementary and relies on the fact that
;x, y ¥ A a(y−x)=0. Note, however, that both pieces of the operator are
needed.
The proof of the second statement is more demanding. Fix finitely

supported functions f, g in In−1, In, respectively. By the explicit form
of L+,

Og, L+fP=2 C
A ¥ E*, n

C
x, y ¥ A

a(y−x) g(A) f(A0{y})

+2 C
A ¥ E*, n

C
x ¥ A
a(x) g(A){f(A0{x})− f(Sx[A0{x}])}

Since Sx[A0{x}]=SxA0{−x} and since g(SxA)=g(A) for x in A
because g belongs to In, a change of variables B=SxA, xŒ=−x in the
second piece of the second term permits to rewrite the second term on the
right hand side as

4 C
x ] 0
a(x) C

A ¥ E*, nA ¦ x

g(A) f(A0{x})

because a(−x)=−a(x). We claim that

C
x ] 0
a(x) C

A ¥ E*, nA ¦ x

g(A) f(A0{x})=
1
n−1

C
x, y ] 0

a(y−x) C
A ¥ E*, nA ¦ x, y

g(A) f(A0{y})
(7.3)

We conclude the proof of the lemma assuming (7.3), whose proof is
presented at the end. It follows from identity (7.3) and the previous
expression for Og, L+fP that

Og, L+fP=2 11+
1
n
2 C
A ¥ E*, n

C
x, y ¥ A

a(y−x) g(A) f(A0{y})

+2 11+1
n
2 C
A ¥ E*, n

C
x ¥ A
a(x) g(A) f(A0{x})
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The first term of the right hand side, which can be written as

2 11+1
n
2 C
y ] 0

C
A ¥ E*, nA ¦ y

g(A) f(A0{y}) C
x ¥ A
a(y−x)

is equal to

−2 11+1
n
2 C
y ] 0
a(y) C

A ¥ E*, nA ¦ y

g(A) f(A0{y})

−2 11+1
n
2 C
x, y ] 0

a(y−x) C
A ¥ E*, nA ¦ y, A ¨ x

g(A) f(A0{y})

because ;x ¥ A a(y−x)=−a(y)−;x ] 0, x ¨ A a(y−x). The first term of this
formula cancels with the second one in the last expression for Og, L+fP.
Therefore,

Og, L+fP=−2 11+
1
n
2 C
x, y ] 0

a(y−x) C
A ¥ E*, nA ¦ y, A ¨ x

g(A) f(A0{y})

To conclude the proof of the lemma, it remains to change variables
B=A0{y} and to recall the definition of the operator L− .
We turn now to the proof of Claim (7.3). Since for y in A,

g(A)=g(SyA) and since |A|=n, the left hand side of (7.3) is equal to

1
n
C
x ] 0
a(x) C

A ¥ E*, nA ¦ x

C
y ¥ A 2 {0}
y ] x

g(SyA) f(A0{x})

=
1
n

C
x, y ] 0
y ] x

a(x) C
A ¥ E*, nA ¦ x, y

g(SyA) f(A0{x})+
1
n
C
x ] 0
a(x) C

A ¥ E*, nA ¦ x

g(A) f(A0{x})

Notice that the second term on the right hand side is precisely the
original one. Consider the first term. Perform a change of variables B=SyA,
rewrite (S−yA)0{x} as S−y(A0{x−y}) and recall that f(S−y(A0{x−y})
=f(A0{x−y}) if −y belongs to A because f is in In−1, to rewrite this
expression as

1
n

C
x, y ] 0
y ] x

a(x) C
A ¥ E*, nA ¦ x−y, −y

g(A) f(A0{x−y})
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A change of variables xŒ=x−y, yŒ=−y, shows that this expression is
equal to

1
n

C
x, y ] 0

a(x−y) C
A ¥ E*, nA ¦ x, y

g(A) f(A0{x})

To prove (7.3), it remains to recollect all previous identities. L

It follows from this result that the operator L++L− is anti-symmetric
in L20, −1(Eg) 5I:

Corollary 7.3. The operator L++L− is anti-symmetric in L
2
0, −1(Eg)

5I:

Sf, (L++L−) gT0, −1=−S(L++L−) f, gT0, −1

for all finitely supported functions f, g in I. The same statement remains in
force if L++L− is replaced by Pn(L++L−)Pn for every n \ 1, where
Pn=; 1 [ j [ n pj.

The proof of Corollary 7.3 is elementary and left to the reader. One
needs only to recall identities (7.2). The next result states that Ld is a
bounded operator from L2(Eg, n) to H−1(Eg, n).

Lemma 7.4. There exists a finite constant C0, independent of n,
such that for each n \ 1 and for any finitely supported functions f,
g: Eg, n Q R,

OLdf, gP [ C0 `n ||g||1 ||f||0

In particular,

||Ldf||−1 [ C0 `n ||f||0

The very same estimates remain in force if Ld is replaced by Ls.

The proof of Lemma 7.4 is elementary and left to the reader. Next
estimate is Lemma 2.3 of ref. 8. Recall from Section 4 the definition of the
operator B.

Lemma 7.5. There exists a finite constant C0 such that for any
function f: En, g Q R in H1,

||f||21 [ ||Bf||2Xn, 1 [ C0n ||f||
2
1
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Proof. The first inequality is elementary and follows from the expli-
cit formulas for the respective H1 norms. To prove the second inequality,
for x=(x1,..., xn) ¥ En, g, let

W1(x)=C
n

j=1
s(xj), W2(x)= C

n

i, j=1
s(xi−xj)

We also denote these quantities by W1(A) and W2(A), for
A={x1,..., xn}. A simple computation shows that there exists a finite
constant C0 such that

|BLsf(x)− L̃sBf(x)| [ C0{W1(x)+W2(x)} |Bf(x)| (7.4)

for every x in En, g and f: En, g Q R.
We are now in a position to prove the second bound. By definition,

||Bf||2Xn, 1=−
1
n!

C
x ¥Xn

(Bf)(x)(L̃sBf)(x)

Since Bf vanishes outside En, g, we may restrict the sum to En, g. Now,
adding and subtracting (BLsf)(x) in this expression and recalling (7.4), we
obtain that

||Bf||2Xn, 1 [ ||f||
2
1+
C0
n!

C
x ¥ En, *

{W1(x)+W2(x)}{Bf(x)}2

=||f||21+C0 C
A ¥ En, *

{W1(A)+W2(A)} f(A)2

By Theorem 4.7 in ref. 8 or Lemma 3.7 in ref. 13 the second term of
the previous formula is bounded by C0n ||f||

2
1, which concludes the proof of

the lemma. L

It follows from this result that

1
C0n
||f||2−1 [ ||Bf||2Xn, −1 [ ||f||

2
−1 (7.5)

Lemma 7.6. There exists a finite constant C0 such that

||BLsf− L̃sBf||2Xn, −1 [ C0n
2 ||f||21, ||BLdf− L̃dBf||2Xn, −1 [ C0n

2 ||f||21

for all n \ 1 and all functions f: En, g Q R.
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Proof. We prove the first estimate and leave to the reader the details
of the second. Fix n \ 1 and a function h: Xn Q R. We need to estimate the
scalar product

1
n!

C
x ¥Xn

h(x){BLsf(x)− L̃sBf(x)} (7.6)

in terms of the H1(Xn) norm of h and the H1(En, g) norm of f. There are two
possible cases. Either x belongs to En, g or x does not belong to En, g.
In the first case, by (7.4), the expression inside braces in previous

formula is absolutely boundedbyC0Wg(x) |Bf(x)| for some finite constantC0,
where Wg(x)=W1(x)+W2(x). Therefore, the corresponding piece in the
previous formula is bounded above by

1
n!

C
x ¥ En, *

Wg(x) |h(x)| |Bf(x)|

[
1
2a
1
n!

C
x ¥ En, *

Wg(x) h(x)2+
a

2
C

A ¥ En, *

Wg(A) f(A)2

for every a > 0.
If x does not belong to En, g, the corresponding piece of the scalar

product writes

−
2
n!

C
x ¨Xn
z ¥ Z

d

1 [ j [ n

s(z) h(x) Bf(x+zej)−
2
n!

C
x ¨Xn
z ¥ Z

d

s(z) h(x) Bf(x+z1)

because in this case BLsf(x)=0.
We estimate the first term and claim that the second can be handled in

the same way. Since Bf vanishes outside En, g, it is implicit in the previous
formula that the first sum is restricted to all x such that x+zej belongs
to En, g. Since x+zej ¥ En, g and x ¨ En, g, either xj=0 or xj=xk for some k.
In particular, since 2ab [ aa2+a−1b2 for every a > 0, a change of variables
gives that the first term of the previous formula is bounded above by

1
n!a

C
x ¥Xn

h(x)2 W̃g(x)+
a

n!
C

x ¥ En, *

Bf(x)2Wg(x)

where W̃g(x)=; 1 [ j [ n 1{xj=0}+; j ] k 1{xj=xk}. We may of course
replace the sum over Xn by a sum over En, g in the second term, loosing the
factor n!.
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Adding together all previous estimates, we obtain that the scalar
product (7.6) is bounded above by

C0
n!a

C
x ¥Xn

h(x)2 {W̃g(x)+Wg(x)}+C0a C
A ¥ En, *

f(A)2Wg(A).

The same proof of Theorem 4.7 in ref. 8 or Lemma 3.7 in ref. 13
shows that in dimension d \ 3, the first term is bounded above by
C1nA−1 ||h||

2
Xn, 1 for some finite constant C1, while the second, by the quoted

results, is less than or equal to C1nA ||f||
2
1. To conclude the proof of the

lemma, it remains to minimize over A and to recall the variational formula
for the H−1 norm. L

We conclude this section with a central estimate involving the
operators L+, L− . This result is Theorem 4.4 in ref. 8. The reader can find
in Lemma 4.1 of ref. 13 a clearer proof.

Lemma 7.7. There exists a finite constant C0 depending only on the
transition probability p such that

3 C
A ¥ E*, n+1

(L+f)(A) g(A)4
2

[ C0n ||f||
2
1 ||g||

2
1

3 C
A ¥ E*, n

f(A)(L−g)(A)4
2

[ C0n ||f||
2
1 ||g||

2
1

for all n \ 1 and all finite supported functions f: Eg, n Q R, g: Eg, n+1 Q R. In
particular,

||L+f||
2
−1 [ C0n ||f||

2
1, ||L−g||

2
−1 [ C0n ||g||

2
1
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